I.AM. ROBOT Team 4810

What is FRC? FIRST Robotics Competition

What is First Robotics Competition (FRC)?

- Non-profit organization
 - Excitement of a sport with the rigors of science and technology
- High-school students and Mentors work together
- Worldwide kickoff: the game is announced.
 - Teams right away start the six- week process. Every year the game and rules are different
- The messages of FIRST are crucial for the team's success

Messages of FIRST

- Master STEM skills
 - Experience through sub-groups
- Learn and use sophisticated software and hardware
 - Using advanced software systems to code and design
- Design, build and compete with a robot
 - 100% student based with minimal assistance
- Improve teamwork, interpersonal, and communication skills
 - Outreach projects and team building activities
- Cooperate and form alliances with other teams during competition
 - Strategize and plan
- Understand and practice Gracious Professionalism[™]
 - Respecting our mentors, teammates and proper competition etiquette

What is the IAM Robotics Team? How We Operate

The International Academy of Macomb (IAM)

- Macomb County magnet school made of 18 Macomb County school districts.
 - Highly motivated college-bound students
- Follows the International Baccalaureate Program (IB)
- Promotes critical thinking and worldwide point of views

Awards

- 2013: <u>Grand Blanc Competition</u>: Rookie All-Star Award
- <u>Troy Competition</u>: Silver Medalist, Rookie All-Star Award
- <u>State Championship</u>: Michigan All-Star Rookie Award
- World Championship participant
- 2014: <u>Troy Competition</u>: Entrepreneurship Award
- Centerline Competition: Ranked 3rd
- **2015**:
- <u>Bedford Competition</u>: Gracious Professionalism Award

2016:

- <u>Waterford Competition</u>: Ranked
 9th Quarterfinalists
- <u>Troy Competition</u>: Ranked 10th -Semi-finalists, Creativity Award
- Invited to State Championship
- 2017: <u>Southfield Competition</u>: Entrepreneurship Award
- <u>State Championship</u>
- 2018: <u>Troy Competition:</u>
- Design and Creativity Award
- World Competition Qualifiers

FRC 4810

- Members are mostly from IAM and a few from Dakota High School
 - This will be our sixth year competing and we are ready to succeed!
- The team has flourished to 45 members and around 12 mentors.
- We need financial support, building supplies, tools, or even donations of food or meals.

Strengths

- Gaining mentors with FIRST experience
- Team consisting of students from all over Macomb
- Dedicated and hardworking students
- Own building

Opportunities

- Well-rounded students
- Securing sponsors
- Trained mentors
- Visiting schools
- Community Outreach

Weaknesses

- Rigorous IB workload
- Funding
- New team construction
- More underclassmen than upperclassmen

Threats

- Keeping mentors
- Keeping build site
- Return in sponsors
- New team members

Giving Back to the Community

- We are thankful for sponsorships but we also give back
 - Volunteering locally
 - Mentor Elementary Lego
 Robotics Teams

FRC Game 2018 FIRST Power Up

FRC 2018 POWER UP

- Teams trapped in an 8-bit video game
- Two alliances with three teams per alliance
- 15 second autonomous 2 minute and 15 second teleoperated

Using the yellow power cubes, the objective of the game is to have ownership of the switch and the scale for as much time as possible. During the game you can exchange power cubes for temporary power ups. The final objective is to climb the scale in order to face the boss.

POWER UPS

Force: gives the alliance ownership of the Switch, Scale, or both for a limited period of time

Levitate: gives a robot a free climb

Boost: doubles the rate points are earned for a limited period of time

SWITCH

GAME FIELD

Strategy and Scouting

One of the Ways to Success

Our Strategy

- A kick-off event on the very first day of the FRC Season
- Whole team discussion on Strategy
- Priorities
- Auton and Teleop Discussions
- Overall Game Strategy

Scouting

- Watch a robot and take notes on the robot's performance throughout the match.
- We scout because it provides our team with accurate data which is used to help us decide alliance partners.
- After qualification rounds, the top 8 teams will each pick two additional teams to join their alliance (total of three teams per alliance).
- The data collected throughout qualification will help our team decide what other teams we want to form an alliance with.

Game Scouting

Name R or B	Team #	Match	#	#			
Autonomous			F	м	Ν		
Cross Line	Shot (LB or HB)- kPa:	Gears:					
Teleoperated		Chute or Pic		Pickup			
High Boiler:	Low Boiler:		Gea	ars:			
Climbing							
Can it Climb? (Yes or No)	Did it make it? (Yes or No)		Sta	y On (Y	es or No)		

Qualitative Comments:

Pit Scouting

Autonomous

Can it move across the line? Yes or N		Can it shoot or place a gear?		Yes or No			
		-If Yes, what position?	Left	Middle	Right		

Description of Shooter:

Description of Gear:

Teleoperated

Shooter:

Low Goal:

How fast can it release balls? _____ Percentage Accuracy: _____

High Goal:

P

Hooper Container Size:

How fast can it release balls? _____ Percentage Accuracy: _____

Gear:

How does it obtain? Chute or Floor How long to receive one gear? ______ How many cycles can it run in a game? ______ How long is one cycle? ______ Can it securely hold a gear? Yes or No <u>Climbing:</u> Can it climb? Yes or No Can it stay on? Yes or No How fast can it climb? _____ Success rate? _____ <u>Drivetrain:</u> What type of chassis? ______ How many wheels? _____ Type? _____ How fast? _____

2017 Process

Pros:

- Good mentor and student collaboration
- Efficient schedule
- Successful
- Training sessions

Cons:

- Slow software
- Limited amount of time

Our Design Robot Designed in One Week

Gear Pickup System from Last Year

2018 CAD Goals

- CAD division contribute more directly to the design of the robot than members of any other group.
- The CAD group begins designing a 3D model of the robot
 - ▷ About a 1 week process
- Then given to the machining group to be made into actual parts for the robot

Build Robot in Four Weeks

Hard Stop	15-Jan	16-Jan	17-Jan	18-Jan	19-Jan	20-Jan
WEEK Work Day Finish day Date					Wk2	Wk3
Kickoff						
Brainstorming						
Top 10 designs						
Evaluate/Eliminate designs						
Test Kit and Data Collection						
Design Related Component						
Strategy Related Component						
Human Play of game						
Design Finalized (Drive)		-				
Order/Build (Drive)						
Primary Mechanism Prototyping			5 <i>-</i>			
Primary Mechanism Engineering				-		
Order/Build (Primary Mechanism)						
Secondary Mechanism Prototype		Å				55
Secondary Mechanism Engineer						
Order/Build (Secondary Mechanism)					-	
Final Mechanical Assembly						
Electrical Board Design						
Pneumatic Schematic						
Electrical Board Construction			1.1			

Benefits of Sponsorship

Benefits to Corporate Sponsor

- Creating a relationship between students and your business
- Direct impact in student education
- Implementing marketing and awareness of your business
- Creating well rounded citizens in the community
- Creating positive marketing opportunities
- The corporation can work aside students interested in the company
- Allows cooperation to teach their messages and objectives to students
- Enhance critical time management skills
- Creating a unique partnership between students and adults
- Provides student-run robotics demonstrations for corporate meetings and events

Benefits to Students and Community

- Inspires a desire for scientific learning
- Teaches necessary STEM skills
- Creates unique learning environment
- Provides opportunities for disadvantaged students to develop STEM skills
- Develops interdisciplinary skills between subjects
- Makes science and technology comfortable and accessible
- Creates a role model relationship with mentors
- Breaks down gender, race, and culture barriers
- Builds lasting relationships across all four grades
- Teaches teamwork and self esteem
- An alternative competitive environment than the normal athletic environment
- Teaches creativity and problem solving
- Highlights the success in winning and where it can lead students

THANK YOU

